Buscar este blog

lunes, 17 de enero de 2011

UNIDAD 3

Unidad 3 Administración del Procesador
Maximizar la utilización del CPU obtenida con la multiprogramación
 Ciclo de ráfaga CPU–I/O. La ejecución del proceso consiste de un ciclo de CPU y de una espera de I/O.
 Distribución de las ráfagas de CPU
Un planificador de tareas es una aplicación de software de la empresa que se encarga de las ejecuciones desatendida
fondo, comúnmente conocido por razones históricas como del procesamiento por lotes.
Los sinónimos son lote sistema, Sistema de Gestión de Recursos Distribuidos (SGDD), y Distributed Resource Manager (DRM). Hoy en día el trabajo de programadores suelen ofrecer una interfaz gráfica de usuario y un único punto de control para la definición y el seguimiento de las ejecuciones en el fondo de una red distribuida de computadoras.

TIPOS DE PLANEACION  JOB SCHEDULING
PLANEACION DE TRABAJOS (JOB SCHEDULING)
Objetivo de la planificación: Minimizar el tiempo de espera y minimizar el tiempo de respuesta. La planificación (scheduling) es la base para lograr la multiprogramación.
Un sistema multiprogramado tendrá varios procesos que requerirán el recurso procesador a la vez. Esto sucede cuando los procesos están en estado ready (pronto). Si existe un procesador disponible, se debe elegir el proceso que será asignado para ejecutar. La parte del sistema operativo que realiza la elección del proceso es llamada planificador (scheduler).
La planificación hace referencia a un conjunto de políticas Y mecanismos incorporados a sistemas operativos que gobiernan el orden en que se ejecutan los trabajos.
Un planificador es un módulo del S.O que selecciona el siguiente trabajo que hay que admitir en el sistema y el siguiente proceso que hay que ejecutar
En muchos sistemas, la actividad de planificación se divide en tres funciones independientes: planificación a largo, medio, y corto plazo.
FIRST IN FIRST OUT JOB SCHEDULING
FIRST IN FIRST OUT (FIFO)
Primero en llegar primero en ser tendido. la cpu se asigna a los procesos en el orden que lo solicitan,
 cuando el primer proceso entra en el sistema,
se le inicia de inmediato y se le permite ejecutar todo el tiempo que necesite, cuando llegan otros procesos se les coloca al final de la cola.Cuando se bloquea el proceso en ejecucion, se ejecuta el primer proceso de la cola, si un proceso bloqueado vuelve a estar listo se le coloca al final de la cola como si fuera un proceso recien llegado.
. Es del tipo no expropiativo
. Es equitativo
. Solo necesita una cola para implementarse
. Presenta desventajas cuando se tienen procesos dedicados a CPU y dedicados a E/S


ROUND ROBIN JOB SCHEDULING
ROUN ROBIN (RR)
Algoritmo apropiativo consistente en determinar un quantum (tiempo de reloj) que marcará
el intervalo de CPU que se le cederá al proceso ejecutando. Cuando finalice el quantum al
Proceso se le quitará la CPU y pasará a la cola de listo. La cola de listos sigue la estructura
FIFO. Si un proceso no consume su quantum libera la CPU y ésta es asignada al siguiente
Proceso de la cola de listo.
Los procesos se despachan en “FIFO” y disponen de una cantidad limitada de tiempo de cpu, llamada “división de tiempo” o “cuanto”.
Si un proceso no termina antes de expirar su tiempo de cpu ocurren las siguientes acciones:
1. La cpu es apropiada.
2. La cpu es otorgada al siguiente proceso en espera.
3. El proceso apropiado es situado al final de la lista de listos.
Es efectiva en ambientes de tiempo compartido.
La sobrecarga de la apropiación se mantiene baja mediante mecanismos eficientes de intercambio de contexto y con suficiente memoria principal para los procesos.

SHORTEST JOB FIRST  JOB SCHEDULING
Es una disciplina no apropiativa y por lo tanto no recomendable en ambientes de tiempo compartido. El proceso en espera con el menor tiempo estimado de ejecución hasta su terminación es el siguiente en ejecutarse. Los tiempos promedio de espera son menores que con “FIFO”.
SHORTEST REMAINING TIME (STR)
Esta disciplina elige siempre al proceso que le queda menos tiempo de ejecución estimado para completar su ejecución; de esta forma aunque un proceso requiera mucho tiempo de ejecución, a medida que se va ejecutando iría avanzando en la lista de procesos en estado listo hasta llegar a ser el primero. Para realizar esta elección, es necesario actualizar el PCB de los procesos a medida que se le asigna tiempo de servicio, lo que supone una mayor sobrecarga adicional.
Es una disciplina apropiativa ya que a un proceso activo se le puede retirar la CPU si llega a la lista de procesos en estado listo otro con un tiempo restante de ejecución estimado menor.
Este algoritmo es la versión no apropiativa o espulsiva del algoritmo Shortest Process Next (SPN) o también llamado Shortest Job First (SJF).
En el algoritmo Shortest Remaining Time el planificador selecciona el proceso más corto, al igual que antes, pero en este caso el cambio se controla cada vez que un proceso llega a la cola. Es decir, cuando un proceso se desbloquea o se crea uno nuevo y el tiempo de ráfaga es menor que el tiempo de ráfaga del proceso que se está ejecutando, entonces se realiza un cambio de contexto, el bloqueado se ejecuta y el que se estaba ejecutando pasa a la cola de procesos listos. De este modo cuando se desbloquea o entra un proceso nuevo, se calcula su tiempo de ráfaga. Si el proceso que se está ejecutando le queda más tiempo de ráfaga que nuestro tiempo de ráfaga calculado entonces se procede a realizar el cambio de contexto.
. Definición: Algoritmo apropiativo (que en cualquier momento se le puede quitar la CPU para asignársela otro proceso) consistente en elegir de la cola de listos el proceso con menos necesidad de tiempo restante de CPU para cada instante de tiempo.
Características:
  Ofrece un buen tiempo de respuesta.
  La productividad es alta a cambio de la sobrecarga del sistema (a cada paso debe decidir a que proceso asignarle la CPU).
  Penaliza los procesos largos.
  Se puede producir inanición.


HIGHEST RESPONSE TATIO NEST JOB SCHEDULING
HIGHEST RESPONSE RATIO NEXT (HRN)
Definición:
Algoritmo apropiativo parecido al SRT consistente en calcular el Reponse Ratio (Ratio de respuesta) para asignar la CPU a procesos más viejos. (Para evitar la inanición).
Características:
  Es muy productivo pero se sobrecarga el sistema.
  Ofrece un buen tiempo de respuesta.
  Equilibra los procesos, aunque da prioridad a los procesos más cortos.
  Evita la inanición (los procesos que envejecen serán ejecutados).
Las prioridades, que son dinámicas, se calculan según la siguiente fórmula, donde pr es la “prioridad”, te es el “tiempo de espera” y ts es el “tiempo de servicio”:
• Elige proceso listo con valor mayor de R
• Tiene en cuenta edad del proceso
• Debe estimarse el tiempo se servicio previamente: en base a historia pasada o valor dado por usuario o administrador.
• R= w + s
                   s
R= tasa de respuesta
w= tiempo consumido esperando al procesador
s = tiempo de servicio esperado
Que corrige algunas deficiencias de SJF, particularmente el retraso excesivo de trabajos largos y el favoritismo excesivo para los trabajos cortos. HRN es un disciplina de planificación no apropiativa en la cual la prioridad de cada proceso no sólo se calcula en función del tiempo de servicio, sino también del tiempo que ha esperado para ser atendido. Cuando un trabajo obtiene el procesador, se ejecuta hasta terminar. Las prioridades dinámicas en HRN se calculan de acuerdo con la siguiente expresión: Prioridad = (tiempo de espera + tiempo de servicio) / tiempo de servicio Como el tiempo de servicio aparece en el denominador, los procesos cortos tendrán preferencia. Pero como el tiempo de espera aparece en el numerador, los procesos largos que han esperado también tendrán un trato favorable. Obsérvese que la suma tiempo de espera + tiempo de servicio es el tiempo de respuesta del sistema para el proceso si éste se inicia de inmediato.
MULTIPROCESAMIENTO
Generalidades de Multiprocesadores.
Un multiprocesador se define como una computadora que contiene dos o más unidades de procesamiento que trabajan sobre una memoria común bajo un control integrado.
Si el sistema de multiprocesamiento posee procesadores de aproximadamente igual capacidad, estamos en presencia de multiprocesamiento simétrico; en el otro caso hablamos de multiprocesamiento asimétrico.
Si un procesador falla, los restantes continúan operando, lo cual no es automático y requiere de un diseño cuidadoso.
Un procesador que falla habrá de informarlo a los demás de alguna manera, para que se hagan cargo de su trabajo .
Los procesadores en funcionamiento deben poder detectar el fallo de un procesador
Determinado. El Sistema Operativo debe percibir que ha fallado un procesador determinado y ya no podrá asignarlo y también debe ajustar sus estrategias de asignación de recursos para evitar la sobrecarga del sistema que está degradado.
Distribución de Ciclos
Una “estructura de ciclos o de repetición” implica la repetición de una serie de proposiciones (cuerpo del ciclo) hasta que ocurre alguna condición de terminación, por ejemplo:
For i = 1 to 3
Do
El procesador secuencial realizará en secuencia lo siguiente:
En un sistema de multiprocesamiento con tres procesadores disponibles se podrían
Ejecutar concurrentemente.
Reducción de la Altura del Arbol
Utilizando las propiedades asociativa, conmutativa y distributiva de la aritmética, los
Compiladores pueden:
1. Detectar el paralelismo implícito en expresiones algebraicas.
2. Producir un código objeto para multiprocesadores que indique las operaciones que se pueden realizar simultáneamente.
3. Reordenar expresiones para que sean más apropiadas para la computación en paralelo.

SISTEMAS MULTIPROCESAMIENTO
INTRODUCCION
A pesar de las grandes mejoras acaecidas en monoprocesadores para algunas aplicaciones no es suficiente.
– La solución pueden ser los sistemas multiprocesadores:
o Solución más sencilla, natural y con mejor coste-prestaciones.
o Las mejoras en microprocesadores cada vez son más complejas: cada avance implica.
1. Flexibilidad: El mismo sistema puede usarse para un único usuario incrementado el rendimiento en la ejecución de una única aplicación o para varios usuarios y aplicaciones en un entorno compartido.
2. Coste-rendimiento: Actualmente estos sistemas se basan en procesadores comerciales, por lo que su coste se ha reducido drásticamente. La inversión más fuerte se hace en la memoria y la red de interconexión.
Como su nombre indica son aquellos sistemas operativos que están montados sobre ordenadores que están compuestos por más de un procesador, supongamos un PC que en vez de tener un Pentium, tuviera dos o más Pentium conectados entre si dentro de la misma placa base, esto sería un sistema multiprocesador.
CLASIFICACION POR USO DE LOS RECURSOS
Sistemas monoprogramados: Son los que solo permiten la ejecución de un programa en el sistema, se instalan en la memoria y permanecen allí hasta que termine su ejecución. Sistemas multiprogramados: Son aquellos que se basan en las técnicas de multiprogramación, existen dos tipos:
·   Multitarea apropiativa (preemptive): Se utiliza en sistemas operativos cuya gestión es quitar el control del microprocesador al programa que lo tiene.
·   Multitarea cooperativa: El programa tiene el control del microprocesador, el sistema operativo no puede decidir quien usa el microprocesador.
Sistemas de multiprocesamiento: Formado por varios microprocesadores. Depende del tipo de trabajo y los objetivos que debe cumplir cada sistema para dar el mejor servicio al usuario, se clasifican en:
Procesamiento por lotes (batch): Cada programa realiza un conjunto de pasos secuenciales relacionados entre si
SISTEMAS OPERATIVOS DEL MULTIPROCESADOR
Sistema Operativo de Multiprocesadores Las capacidades funcionales de los Sistema Operativo de multiprogramación y de multiprocesadores incluyen lo siguiente:
• Asignación y administración de recursos.
• Protección de tablas y conjuntos de datos.
• Prevención contra el ínter bloqueo del sistema.
• Terminación anormal.
• Equilibrio de cargas
Equilibrio de carga del procesador.
• Reconfiguración.
Las tres últimas son especialmente importantes en Sistemas Operativos de multiprocesadores, donde es fundamental explotar el paralelismo en el hardware y en los programas y hacerlo automáticamente. Las organizaciones básicas de los Sistemas Operativos para multiprocesadores son las siguientes:
• Maestro / satélite.
• Ejecutivo separado para cada procesador.
• Tratamiento simétrico (o anónimo) para todos los procesadores.
·   Maestro / Satélite - Es la organización más fácil de implementar.
No logra la utilización óptima del hardware dado que sólo el procesador maestro puede ejecutar el Sistema Operativo y el procesador satélite sólo puede ejecutar programas del usuario.


No hay comentarios:

Publicar un comentario